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Multiple hypergeometric functions and 9-j coefficients 
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Abstract It is well known that the 9- j  recoupling mefficient appearing in  the quantum theoly 
of angular momentum has 12 symmetries. However. the triple-sum series expression for the 
9-j  coefficient exhibits none of these symeuies. Here a stretched 9-j  coefficient for which a 
closed-form (single-term) expression exists, is considered and the type of summation theorems 
the triple-sum series reduces is investigated for any of the 72 symmetries. Apart from well 
known single-summation theorems for hypergeometric functions, this analysis gives rise to new 
summation theorems for double and triple hypergeometric functions. 

1. Introduction 

The basic idea of this paper was described in Srinivasa Rao and Van der Jeugt (1994, here 
referred to as I). In that paper, the doubly stretched 9- j  coefficient 

was considered. This coefficient has a closed-form expression (Sharp 1967). On the other 
hand, 9- j coefficients can also be determined by means of ,the triple-sum series of Jucys and 
Bandzaitis (1977). This triple-sum series can be written down for (1) directly or for any of 
the 71 remaining symmetries (Jahn and Hope 1954) of (1). Due to the inherent asymmehy 
of the triplesum series, all these 72 expressions would appear to be different. In I, it was 
observed that for certain symmetries of (I), the triple sum would reduce to a single sum 
and stating that these single sums are equal to the closed-form expression for ( I )  thus leads 
to well known summation theorems for generalized hypergeometric functions. Moreover, 
it was pointed out that apart from yielding manifestations of well known summation 
theorems, a complete study of all 72 symmetries opens the prospect of finding genuinely 
new summation theorems. In the present paper, we present such a complete analysis and 
indeed some summation theorems for double and triple hypergeometric functions arise. We 
have not found these in the literature, and hence we believe that they are new results. 

In section 2, we recall the notation for generalized hypergeometric functions and define 
multiple hypergeometric functions. In section 3, the triple-sum series is considered for the 
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72 symmetries of the coefficient (1). It turns out that of the 72 cases, four yield a single 
term (or a closed-form expression); 16 yield a single sum of three different types; 20 yield a 
double sum of six different types; and 32 yield a triple s u m  of four different types. All the 
single sums are manifestations of well known summation theorems. Two of the six double 
summations and two of the four triple summations cannot be summed using known results, 
and they give rise to new summation theorems for special double and triple hypergeometric 
functions, while the rest can be summed using known single summation theorems. These 
summation formulae and some further specializations are discussed in section 4, followed 
by some conclusions. 

J Van der Jeugt ef a1 

2. Generalized and multiple hypergeometric functions 

The Gauss function or hypergeometric function, nowadays usually represented by the symbol 
2F1[':; 21, is defined as 

Herein, a, b and care  the (complex) parameters, x is the (complex) variable of the function, 
and the common notation for the Pochanuner symbol has been used 

r ( a  + n)  
r ( a )  

(a). = a(a + l ) (a  + 2 ) .  . . ( a  + n - 1) = (3) 

where r is the classical r-function. For a historical introduction to the Gauss function, and a 
survey of its properties, we refer the reader to the first monograph on hypergeometric series 
by Bailey (1935) and to Slater (1966). The idea of extending the number of parameters 
in the Gauss function occurred for the first time in the work of Clausen (1828). and these 
generalized hypergeometric functions were studied by Saalschutz (1890). Dixon (1903) and 
Dougall (1907). Much of the theory was summarized and extended by Bailey (1935; see 
also Slater 1963). The standard notation and definition for a generalized hypergeometric 
function is 

In a more compact notation, devised by Burchnall and Chaundy (1941) for multiple 
hypergeometiic functions, the whole list of parameters (al, . . . , aA) is not written explicitly 
but simply denoted by (a) .  Thus, (4) would be written as AFB [ g;; x]. 

When one of the numerator parameters uj is a negative integer, function (4) becomes 
a terminating series. Some of the most well known summotion theorems for generalized 
hypergeometric functions are of this type; moreover, they are usually for unit argument 
x = 1. Vandermonde's theorem (which is the terminating form of the well known Gauss 
theorem, see Slater (1966)) reads as 
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In such summation theorems it is always understood that the termination is determined 
by -m (hence -U and -c do not belong to (0.1.. . . , m - 111, although it is common 
not to mention this assumption explicitly. Another famous summation theorem is due to 
Saalschiitz: 

for a + b - m + 1 = c + d .  Some different summation theorems, which were discovered 
relatively recently, are due to Minton (1970) and Karlsson (1971) (see equation (1.9.3) of 
Gasper and Rahman (1990)). Minton’s theorem reads as 

(7) 

Using this result, Karlsson deduced the where ml, . . . , m, are non-negative integers. 
following zero-balanced terminating series summation: 

There are other summation theorems for generalized hypergeometric functions (see Slater 
1966), but the only ones that appear in connection with this paper are (5H8). 

For multiple hypergeometric functions that depend on more variables x ,  y, . . . the 
general theory is less advanced than for generalized hypergeometric functions with one 
variable. In addition the notation is not uniform and often confusing. Appell was the 
first author to study double hypergeometric functions systematically. The standard work 
on Appell series is Appell and Kamp6 de F6riet (1926). A general double hypergeometric 
function is known as the KampC de FCriet function and is defined by (Kamp6 de FCriet 
1921) 

Herein, the parameters aj and cj appear with index m +n in the Pochammer symbols. They 
are the coupling parameters and are responsible for the fact that (9) cannot be written as the 
product of two single hypergeometric functions in x and y separately. In (9), the number of 
parameters with index m is the same as that with index n. In general, this need not always 
be the case and therefore we define the following double hypergeometric function: 

This is, in fact, a special case of a very general function defined by Srivastava and Daoust 
(1969). For double hypergeometric functions there appears to be only one coupling, namely 
m + n. For triple hypergeometric functions with summation indices m.  n and p 9  couplings 
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of the form m + n, in + p, n + p or m + n + p can occur and hence the general notation 
becomes more complicated. Inspired by the general Srivastava and Daoust (1969) notation, 
we define here: 

J Van der Jeugt et a1 

For some of the existing literature on multiple hypergeometric functions. the reader is 
referred to Exton (1976). To our knowledge, the only summation theorems for multiple 
hypergeometric functions are for some very special generalized KampC de F6riet functions 
(see Exton 1976 p 147). In this paper. we find some interesting summation theorems for 
double and triple hypergeometric functions. One of our results, for example, takes the 
following simple form in the notation of (9): 

where or, 6, y are complex numbers and r, s B Pd determine the termination of the series. 

3. The 9-j coefficient 

The 9- j  coefficient, or 1s-jj transformation coefficient, plays an important role in the 
quantum theory of angular momentum (Wigner 1940, Biedenham and Louck 1981). It is 
either given as a double sum over a product of six 3- j coefficients or as a single sum over 
a product of three 6- j  coefficients. From the expression in terms of 3- j  coefficients and 
the symmetrirq of the 3- j coefficient, it can be established that the 9- j coefficient has 72 
symmetries. Another expression for the 9-j coefficient is the triple-sum series of Jucys 
and Bandzaitis (1977). This expression has proved to be useful in numerical computations 
(Srinivasa Rao et al 1989, Srinivasa Rao and Rajeswari 1993), however, it does not exhibit 
any of the 72 symmetries. The Jucys-Bandzaitis triple sum is given by 
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where 

X ]  = 2 f  y~ = - b + e + h  ZI = 2a 

x z = d + e -  f y2  = g + h - i zz = -a + b + c 
x 3 = c -  f + i  

x q = - d + e + f  

y3 = 2h + 1 

y4 = b + e  - h 

z3 = a  + d + g + 1 

24 = a + d - g 
(15) 

x5 = c +  f - i  

p~ = a + d - h + i  p z = - b f d - f + h  p s = - a + b -  f + i  

and 

ys = g - h + i 25 = a  - b + c 

(a - b + c ) ! ( a  + b - c)!(a + b + c +  I)! 
(-a + b + c)!  1 (a. b ,  c)  = 

In (14), a,  b ,  . . , , i are all integers or half-integers, and the three rows and three columns 
mustformtriads(i.e. ( u , b , c )  isatriadif-a+b+c,a-bfcandafb-carenon-negative 
integers). Moreover, the summation indices IC, y ,  z in (14) assume all integer values such 
that the factorials are non-negative. Explicitly, this means that 

0 6 x < min(x4, x5)  

m N 0 .  -PZ - x )  6 Y S h ( y 4 ,  ~ 5 )  

-p3  - 6 I S min(z4, ZS. PI - Y ) .  

Sharp (1967) classified stretched 9 - j  coefficients (a triad (a, b ,  c )  is stretched if one of 
the numbers -a + b + c, a - b + c, a + b - c is zero). In particular, he derived a single-term 
expression for the following doubly stretched 9 - j  coefficient (see also Varshalovich et al 
1975): 

q ,  (17) 
b 
e 

( a i d  a + d + i  i 

This particular 9- j coefficient was also the subject of I. If one uses the triple-sum expression 
(14) on the following particular symmetry of (17), the values of the numbers (15) are such 
that the triple sum reduces to a single term and one finds that 

e b 
{ a i d  a + d + i  i d e 

b ;] = { u ; d  a + d + i  

(2a)!(2d) !(2i)! [ (2a + 2d + 1)(2a + 2 d +  2i + I)! 
Thus, for a particular symmetry of (17), the triplesum expression reduces to a single term. 
Due to the asymmetry of (14), the triple sum does not always reduce to a single term for 
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the other symmetries of (17). This was the basic observation in I consider any symmetry 
of (17) and use (14); this (usually) gives rise to a single-, double- or triple-sum series which 
has to be equal to the single term (IS), hence a summation theorem follows. Several of 
the symmetries have already been considered in I. It was shown that, in some cases, the 
triple sum reduces to a single sum and that this single sum was a manifestation of the 
Vandermonde, Saalschutz or Karlsson theorem. An example where the triple sum reduces 
to a double sum and another where the triple sum remained a triple sum were given in I. 

In this paper, we give a complete classification of the summations that appear for the 72 
symmetries and study the consequent summation theorems. The results are easy to obtain, 
but require a careful analysis of the parameters (15) for each of the 72 symmetries of (17). 

Before summarizing these results, it is convenient to intmduce a shorthand notation for 
a symmetry of (17). For any symmetry, either a permutation ( u a o b q )  of (abc) appears in 
a row and then a permutation (ucu~u~)  of ( c f i )  appears in a column or vice versa. In the 
first case, the 9- j  coefficient will be denoted by ( q , ~ b ~ c l ~ c ~ p i )  and, in the second case, 
by (cr,u,ui luoubuc). For example, 

b c a  
(bcalcif) = a + d + i i a + d ] 

l e  f d  a + d + i  e b 

This notation determines the 9- j coefficient uniquely and has the advantage that it is much 
shorter to tabulate than the 9- j  symbol itself. 

J Van der Jeugt et a1 

{ a : d  pf :}. (19) (ifclacb) = 

Among the 72 expressions, there are four single terms, namely 

(abclicf) (abclifc) (baclcfi) and (baclfci) .  (20) 

The first of these, in fact, corresponds to the second 9- j  coefficient in (18). 

sum and these are given in table 1. 
Then, there are 16 symmetries for which the triplesnm expression reduces to a single 

Table 1. Symmelries giving rise to single-sum expressions. 

Vandermonde zF[ (cbolcfi) (cbulfci) (ficlacb) (ciflacb) (ifclcab) (icflcab) 
(bcalcif) (bcnl f i c )  (ficlbco) (cif Ibea) (icf laeb) (ifclncb) SaalschUtz 3 F2 

Of these 16 cases, six single sums are identified as a Vandermonde zFj summation, 
eight are identified as a Saalschiitz 3F2 summation and two as a Karlsson 4F3 summation. 
Thus, all the single sums can be explicitly performed using the theorems (5). (6) and 
(8). On the other hand, it also follows from the symmetries that all these sums can be 
written as a single term. In other words, suppose we did not know theorem (8), then we 
could have deduced it (in a restricted form only for integer parameters) from the equality 
(nbclcfi) = (abclicf). This inspired us to consider the other symmetries and to investigate 
whether the corresponding double or lriple sums can be performed using known summation 
theorems or whether they give rise to new results. 

Among the remaining symmetries, there are 20 double sums and 32 triple sums. The 
double sums fall into six different types, which we have denoted by D1, . , . , D6. Among 
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Table 2. Symmetries giving rise to double-sum expressions. 

New 
New 

Table 3. Symmetries giving rise to uipie-rum expressions 

(abclfic) (abclcif) (bcalicf) (bcalifc) (ocbl fic) (acblcif) 
Ti (cnblicf) (cabl i fc) (buclicf) (bnclifc) (cfilabc) (fcilubc) New 

(cfilbca) (fcilbca) (cfilcbu) (fcilcba) (ficlbac) (ciflbac) 
Tz (aeblicf) (acblifc) New 
T3 (coblfic) (cablcif) (icflcba) (ifclcba) (icflbca) (ifclbca) (7)tDI 
T4 (cbnlfic) (cbalcif) (icfiabc) (ijclubc) (cjilboc) (fcilbac) (5)+(6)+(6) 

the 32 triple sums, only four different types appear, denoted by TI, T2, T3 and T4. Tables 2 
and 3 give the double and hiple sums according to their type. 

It remains to describe these ten types DI,. .. .D6, TI , .  ... T4. A description is 
summarized in the last columns of tables 2 and 3 .  D1 and D2 seem to be new and they will 
be given at the end of this section. D3 is a double sum with one coupling, but nevertheless 
one of the summations can be performed separately by means of the Minton 4F3 theorem (7). 
What remains can then be simplified and reduced to Vandermonde’s theorem in the second 
summation variable. D4 is a double sum with one coupling, where one of the summations 
can be performed first by means of Vandermonde’s ~ F I  theorem (5) .  and the remaining sum 
also reduces to a Vandermonde sum. v p e  D5 is a double sum, again with one coupling. 
Here, one of the summations can be done using Minton’s 4F3 theorem, and what remains is 
a summation of the Saalschiitz 3F2 type. Finally, for the D6 sums, one summation can be 
performed by means of Vandermonde’s theorem and the remaining summation then reduces 
to a Saalschurz SF, series. 

For the hiple sums, T1 and T2 seem to be new and will be given explicitly below. In 
the T3 triple sums, one summation can be perfomed by means of Minton’s 4F3 theorem, 
and the remaining double sum is of type D1. In the T4 triple sums, one summation can 
be performed using Vandermonde’s theorem, then a second summation can be performed 
using the Saalschiitz 3 Fz theorem and, finally, the third summation can also be done using 
the Saalschiitz theorem. 

To conclude this section, we give the explicit forms of the summations D1, D2, TI and 
T2, which cannot be performed using any known summation theorems. 

The double sum D1 is of the following type: 

(2b - x ) ! ( a  - b + d  + e +  i + x ) ! ( a  - b + c  +x)! 
X . 2  % (a + b + d  - e + i  - x)! ( -a  + b +  c - x ) ! ( a  - b + d + e  - i + x ) !  

( 2 f - z ) ! ( c -  f + i  + z ) !  
X (f + d +  e +  1 - z ) ! ( c +  f - i -z)!(u - b - f + i + x  + z ) !  

z(a  - b + d  + e + i)!(a + b + d  + e  f i + l)!(Zi)! 
= (-1) 

( e +  d - f)!(2a +U +2i + l ) ! ( e + d +  f + I)!’ 

In this sum, the coupling comes from the factor (a - b - f + i + x + z). But a - b - f + i 
is non-positive; indeed, if it was positive then also (a - b - f + i )  + (d - e + f) > 0 or 
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( a + d + i ) - b - e  =- 0, which contradicts the fact that (b ,e ,a+d+i)  forms atriad in (17). 
Because of this, summation (21) does not have a term with x = z = 0 as a starting value and 
it cannot directly be rewritten in terms of one of the double hypergeometric functions of the 
previous section, However, we shall see in the next section that by a simple substitution of 
the summation variables, (21) can be cast in the form of a double hypergeometric function. 

J Van der Jeugt et ~l 

The double sum D2 is of the type: 

(-1)Y'L 
X 

( e + d  - f + y ) !  
(U + 1 + y ) ! ( k  - y ) ! ( e  - d  + f - y ) !  

Y.2 

(2b - z)!(a - b + c + z)!(a + b  + i + f - y -z)! 
b + b + d  + e + i  + 1 - $ ! @ + b + h  - e + i  -$!(-a + b + c - $ ! @  - b +  f- i +$! 

c+d-e+i = (-1) 
(d + e +  f + 1)!(2a + 2d + l ) ! (d  - e + f)!' 

Here, there is again a coupling, but now we can assume that 2a determines the termination 
of the y summation and that --a + b + c determines the termination of the z summation. 
Then, the coupling itself never becomes zero and expression (22) can indeed be written in 
terms of a double hypergeometric function provided that -a - b + f - i > 0. This will be 
given explicitly in the next section. 

The triple sum T1 can be written in the following form: 

( - 1 ) * + Y + L ( 2 a + 2 d t x ) ! ( c + f - i + x ) ! ( a + b + d - e + i + y ) ! ( a + b - c + y ) !  
x!y!z!(-c+ f + i - x ) ! ( 2 b +  1 + y ) ! (a  - b + d + e + i  -y)!(-a - b + c  - y ) !  

X.Y.2 

(4 + e  + f + z ) !  ( P I - Y - Z ) !  
X 

(2a +U+ 1 -z)!(d - e  t f - z)! (pz  + x  + y ) ! (ps  + x  +z)!  
( - 1 ) ~ + d - e - i  (Za + 2d)!(a + b + d  - e + i)!(-d + e + f)! 

(-c+ f+r ) ! (a  -b+c) ! (a  + b + c +  I ) ! ( b + e -  a - d - f)!@ - e  +a! - - 
(23) 

where p 1  = a  - b +  c+2d, pz = a  + d  + b - e  - i and p3 = -d + e -  i +c. The upper 
bounds for the summation variables x .  y .  z are given by -c + f + i, a - b t c,  d - e + f 
respectively. Thus p~ - y - z is always positive, and provided that p z  and p3 are also 
positive (which is possible in this case), the summation (23) can be rewritten as a genuine 
triple hypergeomehic function; this is presented in the next section. 

Finally, the triple sum T2 is of the type: 

( - l )X+Y+L (2b - x)!(a - b + c+ x)!(a - b + d  + e  + i + x ) !  
x ! y ! z !  (-a + b + c - x)!(a + b + d  - e + i - x ) !  X . Y . 2  

(C + f - i + y ) ! ( d  - e + f + y)!(2i + z ) !  
X 

( 2 f + l + y ) ! ( c - f + i - y ) ! ( d + e - f - y ) ! ( 2 a + 2 d + l - z ) ! ( Z a - z ) !  

(P1 - Y - 2 )  

(p2 + x + y)!(p3 + x + z ) !  

- (- 1)2a+c+d-e+i (a - b + d + e + i ) ! (c  + f - i)!(Zi)!(2d)!(u + b +d + e + i + I)! 
Q +2d + I)!@ - f + i ) ! ( d  t e - f)!(c+ f + i  + I)!@ + e  + f + l)!(-c+ f + I)! 

X 

- 
(24) 
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where p~ = 2a + d  + e - f, pz = a - b +  f - i and px = -a - b - d  + e + i .  Again, 
under certain extra assumptions, this summation can be rewritten as a triple hypergeometric 
function, given in the following section. 

Once more, it should be emphasized that the summations (21)-(24) cannot be simplified 
using known summation theorems. In addition, when writing, for example, the summation 
explicitly for some of the other T1 symmetries (as given in table 3), the actual expression 
might, at first sight, look different from (23). Only when rewritten in the multiple 
hypergeometric function notation do such apparently different summations clearly become 
iden tical. 

4. New summation formulae 

Since (21) is somewhat special, we sM1 first treat the hypergeometric function summation 
that is related to (22). 

Expression (22) is valid for all integers or half-integers a ,  b, c. d, e ,  f, i that satisfy the 
triangular relations implied by (17). To write it in a more general form, it is useful to relabel 
these seven independent parameters by the following seven integer parameters: 

m = a + b - c  

p = d - e +  f 

q = c - f + i  

r = a - b +  f - i  

01 = - a  - b - d - e -  i - 1 

B = - 2 b  

y = d + e - f + l .  

Then, (22) can be rewritten in terms of the double hypergeometric function (10): 

0..4:3 - a. B + m , q  + r + 1, -m - p - q 

a+ y + m  + p + q ,  y 9  -m - 4  - r 
Y + P + l  

Fl9:I [ C Y + y :  A + l  

(m + q + r ) ! (m + p + q ) ! r !  
p ! ( q  + r ) !  

1 ; 1, 1 

(-l)m+q ( Y ) p ( a ) m + q  

@),(a + Y)m+ptp(Y + P + 1)mtqtr 
(26) 

In this form, it turns out that the above expression is valid for all complex numbers CY, B, y 
and for all non-negative integers m , p , q , r ,  as long as the termination of the series is 
determined by (-m - p - q)  for the first summation index and by (-m - q - r) for 
the second summation index. Thus, (26) is a summation theorem for a special double 
hypergeomewic function. The validity of (26) has been checked for a large number of data 
by means of MACSYMA (1985). In principle, our technique provides a proof of (26) only 
for integer values (due to integer or half-integer angular momenta). However, the more 
general result (26) can be understood by extending some angular momentum values to the 
complex plane and by considering analytic continuations of angular momentum coefficients 
(thus, certain couplings correspond to su(1 , l )  tensor products rather than to su(2) tensor 
products). The property observed here is similar to the extension of some properties of 
the 6- j  coefficients to certain complex arguments (Raynal 1979). It should be mentioned 
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that a detailed study of the definition and properties of generalized 9- j  coefficients has not 
appeared in the literature. 

Some summations for special KampC de Firiet functions (9) can be obtained from (26) 
by putting m = 0 or q = 0. For example, when 4 = 0, (26) becomes 

F::[ - : 

J Van der Jeugt et a1 

: 1.11 
a, B + m ,  -m - p ,  a + y + m  + p ,  y, -m - r  

B Y + P + l  

( ~ ) m ( a  + Y)m+p(Y + p + 1 ) m t r  

f f + Y  

(27) 
- ( Y ) p ( a ) m  (m + r ) ! ( m  + p ) !  - 

P! 

Now consider the double sum (21). As was explained in the previous section, there is 
no term with x = z = 0, which prevents us from rewriting (21) directly as a hypergeometric 
function. However, if we perform the following transformation of variables: 

x = - a + b + c - u  z = c +  f - i - U  

then (21) becomes 

(-ly+" ( u + b  - c + u ) ! ( c + d + e + i - u ) ! ( 2 c - u ) !  
u ! u !  (2a - c + d  - e + i + U ) ! ( - a  + b +  c - u)! (c+d  + e - i -U)! 

U," 

( - c  + f + i + v)!(2c - U)! 
( - c + d +  e + i +  l+u)!(c+ f - i - u)!(2c- U - U)! X 

(28) 
= (-1y-b-f+i (a  - b + d + e + i ) ! (a  + b + d +  e + i + 1)!(2i)! 

(e + d - f)!(2a + 2d + 2i + l)!(e + d + f + 1) ! ' 

Now there is a term with U = U = 0 and one can again rewrite the equation. It is convenient 
to define the following parameters: 

no = a  - b +  c 

nl = - a + b - d + e - i  

n l = d - e +  f 

n3 = c - f +  i 

a = - c + d + e +  i + 1 

p = -  c + f  + i +  1 (29) 
y = k - c + d - e + i + I  

and to set n = no + nl + n2 + n3. Then, (28) can be rewritten in terms of the double 
hypergeometric function (IO): 

In this form, the summation is valid for all non-negative integers no, n l ,  n2 and n3, and for 
all complex numbers a, ,!?, y (as long as no denominators become zero). Some summation 
theorems for Kamp6 de Fkriet functions of type Fd:.! could be derived from (30), for example 
by putting = 1 - 123 or by considering the special cases no = 0 or nl = 0. 
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Next, we consider (23), and use the following relabelling: 
o r = - a f b - W -  f - i  

p = -  a + b - d + e - i + l  

y = a + b - i -  f + l  

S = 2 b + 2  

p = - c +  f + i  

q = a - b + c  (31) 
r = d - e +  f. 

With these new parameters, the triple sum (23) can be rewritten as a triple hypergeometric 
function (1 1) as follows. 

- . Y - a , B + q + r , - p ,  
F::,!; [ 01 + p : 011, p + q  : 101, y + t  : 110 ' - 

In this form, the above summation result is valid for all complex parameters or, 0, y. 8 and 
for all non-negative integers p ,  q. r (which determine the termination of the three summation 
indices). As for the previous case, it has been verified carefully using MACSYMA. 

An interesting symmetric double summation follows from (32) by putting q = 0. Then, 
(32) reduces to a KampB de Fkriet function and we obtain 

This terminating series summation can, in fact, be further generalized to 

(34) 
r ( a  + d ) r ( c  + e)  ] r ( c  + d ) r ( a  + e) 

; 1 , 1  = 
c + e  

which is now valid for all complex parameters for which the double series is convergent 
(that is, for which Re(n + d )  > 0 and Re(c + e) > 0). We have performed a number of 
numerical tests to verify (34). 

Finally, we give the triple hypergeometric function result related to (24). The new 
parameters are now 

m = c -  f + i  
or = -a + b + c . .  

p = a - b + f - i  

q = a + b - c  

r = d - e +  f. 

B = Z f + 1  

y = - f + e + d  

Then, (24) can be rewritten as follows. 

(35) 



5262 J Van der Jeugt et a1 

Again, this summation result is valid for all complex a, @, y and all non-negative integers 
m, p ,  q ,  r such that the termination of the three summation indices is determined by 
-m - q - r ,  -m and -m - p - q respectively. 

To conclude, by extending certain arguments, originally corresponding to angular 
momenta, to the complex plane, we have been able to formulate four summation theorems, 
(26). (30), (32) and (36). These summations have seven independent parameters, some of 
which are non-negative integers. By specializing certain parameters in these expressions, 
simple summation theorems for some Kampe de Firiet functions can be obtained, such as 
(U),  (33) and (34). 
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Appendix 

The summation results were derived from the central formulae (ZlP(24). Each of these can 
still be manipulated to give interesting side results. We give one example in this appendix. 

Consider (22) as an initial expression, and consider (22) with c replaced by c + 1 as a 
second expression. Adding the right-hand sides of these two expressions obviously gives 
zero and since c appears in only two factors in the left-hand sides the sum of these also 
simplifies greatly. Thus, we obtain 

( Z b - z ) ! ( a + b + i + f - y - z ) !  
6 + b + d + e  + i + 1 -a!@ + b + d  - e + i -d!@ - b +  f - i  +a! X 

(a - b+ c +z)! 
( - a + b + c +  1 -z) !  

X = 0. 

Using the same relabelling as in (Z), this can be rewritten as 

F;:: [ a+r : 
a,B + m  - l , q + r  + 1, - m  - p - q ,  

B . r + 1  

Again, this is valid for all non-negative integers m, n, p ,  q and all complex a, @, y (as long 
as the denominators are non-zero). 
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Another remark which is worth pointing out is that some of the summation theorems 
given here have a q-analogue. This leads to new results for double basic hypergeomehic 
hnction sums (Gasper and Rahman 1990). For this purpose, we define the following double 
basic hypergeometric function, which is a q-generalization of a Kamp6 de F6riet function: 

and (al. a2, . . . , a,,,; q )  = (q; q).(u2; q). . . (a,,,; q).. Then, the following q-analogues of 
(33) and (34) are valid 

where p and r are positive integers; and 

References 

Alisauskas S 1 and Jucys A P 1971 J, Math Phys. 12 594 
Appell P and Kamp? de FMet J 1926 FonctiDns hyperg&m&iqucs et hypersphlriqws (Paris: Gauthier Vlllars) 
Bailey W N 1935 Generalized Hypergeometric Series (Cambridge: Cambridge University Press) 
Biedenham L C and b u c k  1 D 1981 Angular Momentum in Quantum Physics (Encyclopedia of Mathematics and 

BurchnaJ I Land Chaundy T W I941 Quori. J. Math OxfrdSer. 12 112 
Clausen T 1828 J. j4h Moth. 3 89 
Dixon A C 1903 Proc. London Moth Soc. 35 285 
Dougall I 1907 Pmc. E&. Moth Soc. 25 114 
Exton H 1976 Multiple Hypergeometric Functions and Applicalians (Chichester: Ellis Honvood) 
Gasper 0 and Rahman M 1990 Bmic Hypergeom~ric Series (Enc)rlopediin of Mozhmaticr ond in Applicntons 

Iahn H A and Hope J 1954 Phys. Rev. 93 318 
lucys A P and Bandaaitis A A 1977 Angular Momentum in Qunntum Physics (Vilnius: Mokslas) 
Kamp6 de F6riet J 1921 C. R Acad Sei. Paris 173 489 
Karlsson Per W 1971 J. Math. Phys. 12 270 
Symbolics Inc. 1985 An Introduction to O N T X M A C S Y M A ~ ~  Version 3.0 
Minton B M 1970 1. Math Phys. 11 1375 

its Applications 8) (New York: Academic) 

35) (New York Academic) 



5264 

Ray& J 1979 J. Moth. Phys. 20 2398 
Saalschutz 1890 Z Marh. Phys. 35 186 
Sharp R T 1967 Nucl. Phy.  A 95 222 
Slam L 1 1963 J. London Mark Soc. 37 504 
- 1966 Generalized Hypergeomrrie Funerions (Cambridge: Cambridge University Press) 
Srinivasa Rao K and Rajeswari V 1993 Qwnrum Thwq of Angular Momentum: Selected Topics (Berlin: Springer 

Srinivasa Rao K. Rajeswari V and Chiu C B 1989 Compur. Phys. Comun. 56 231 
Srinivasa Rao K and Van der Jeugt J 1994 J. Phys. A: Marh. Gen. at press 
Srivastava H M and Daoust M C 1969 Proc. Nederl =AM, Weremch. A 72 449 
Varshalovich D A. Moskalev A Nand Khenonskii V K 1975 Q u a r u m  Theory ofhgular Momentum (Leningrd 

Nauka) (in Russian); 1988 (Singnpore: World Scientific) (in English) 
Wigner E 1940 Quarum T h e o v  of Angular Momentum ed L C Biedenham and H Van Dam (New York Academic) 

J Van der Jeugt et a1 

and Narosa) 


